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dimensional extinction conditions outside the layer- 
group restrictions have not been included at this stage 
although extensive results along these lines have been 
produced by Tanaka, Sekii & Nagaswa (1983). 
Instead, we note that these extended conditions can 
be found from three-dimensional lattice groups for- 
med from the same restricted set of point groups 
(Goodman, 1984b). 

V. Preliminary requirements for application 
The central plane approximation 

Abstractly the transformation from R 2'2 to R 2'1, to 
the crystal-space coordinates of the layer groups, 
applies. We now examine the main assumption 
needed in order to apply this to real crystals. In the 
central plane approximation (CPA) it is assumed that 
all horizontal symmetry elements of the space group 
lie on the central horizontal plane of the crystal. For 
single symmetry elements this is an approximation 
which becomes exact periodically with crystal thick- 
ness, with the periodicity of the c spacing, and must 
always be a close approximation for crystals having 
many repeat distances in the z direction. This 
approximation is implied in all applications of space- 
group-determined matrices to pattern intensities. It 
has also been assumed in other group treatments of 
CBED symmetries (Tanaka, Sekii & Nagasaw, 1983; 
Buxton, Eades, Steeds & Rackham, 1976). Its validity 
was first tested specifically during the study of/3-GaS 
belonging to the space group P63/mmc, in which 
horizontal diads occur at intervals of 30 ° around the 
[001] axis, separated vertically by c/4. In this case 
all horizontal symmetries were found to be active, as 
if they belonged to the central plane (Goodman & 
Whitfield, 1980). 

Diffraction symmetries at a zone are higher than 
would otherwise be expected, owing to the increased 
possibilities for symmetry interaction under CPA con- 
ditions. As a result single symmetry elements can only 
be examined in isolation at settings sufficiently far 
from a zone, as illustrated in the above study in the 
tests for a center of symmetry. 

Symmetry-group treatment overcomes the problem 
of such detailed analysis. Identification of a few pat- 
tern characteristics at chosen orientations, par- 
ticularly if they include dynamic extinctions, has been 
shown to lead to unequivocal identification of space 
group (Tanaka, Sekii & Nagasawa, 1983; Goodman, 
1984a). 
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Abstract 

In a previous investigation, a system of exact algebraic 
equations was derived for any number and type of 
anomalous scatterers. Solution of the equations pro- 
vides information concerning intensities of scattering 
and certain phase differences. In this paper, it is 
shown that when appropriate combinations of the 

phase differences and their values are made, the result 
is the evaluation of the differences of pairs of triplet 
phase invariants, one associated with the 
macromolecular structure and the second associated 
with the structure of the anomalous scatterers. It is 
usually easy to satisfy the condition that the values 
of triplet phase invariants associated with the struc- 
tures of the anomalous scatterers be close to zero. 
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This permits the evaluation of triplet phase invariants 
associated with the macromolecular structure. Since 
the structures of the anomalous scatterers are quite 
simple in many of the substances of interest, a theo- 
retical and experimental study of the distribution of 
values for triplet phase invariants associated with 
simple structures has been carried out. This has pro- 
vided a quantitative insight into the distribution of 
values of the cosines of triplet phase invariants for 
such structures. It has also identified useful functions, 
based on knowledge of the values of normalized 
structure factor magnitudes, that permit a reliable 
prediction of those triplet phase invariants that have 
values close to zero. In the mathematical sense, the 
evaluation of the triplet phase invariants for a 
macromolecular structure, solely from the intensity 
data, is exact, except for the deviation of the triplet 
phase invariants for the structure of the anomalous 
scatterers from zero. No structural information con- 
cerning the anomalous scatterers is required. In prac- 
tice, of course, experimental error will affect the 
accuracy of the information derived from the alge- 
braic equations. The possibility of overdeterminacy 
in the equations should be beneficial in reducing the 
effect of experimental error. 

Introduction 
In a previous investigation, an algebraic analysis of 
multiple-wavelength anomalous dispersion data 
resulted in a set of simultaneous equations without 
approximation (Karle, 1980a). The unknown quan- 
tities in the equations are quantities that represent 
nonanomalous scattering and hence are independent 
of wavelength. This is ettected by separating the con- 
tribution of the real and imaginary parts of the atomic 
scattering factors from that of the normal atomic 
scattering factors in the defining equations for the 
structure factors. The resulting simultaneous 
equations contain the quantities representing the 
effects of anomalous dispersion as separate factors 
modifying the wavelength-independent unknown 
quantities. Evaluation of the factors arising from 
anomalous dispersion is easily obtained from the 
tabulated values for the real and imaginary correc- 
tions to the normal atomic scattering factors. 

The simultaneous equations have several favorable 
characteristics. With appropriate definitions for the 
unknown quantities, the equations are linear in the 
variables. The unknown quantities are comprised in 
part of the intensities of scattering for each of the 
individual types of atoms present. Their values corre- 
spond to individual structures in which each type of 
atom would be present in isolation from the others. 
Additional unknown quantities are phase differences 
arising from the scattering from the different types of 
atoms. The equations retain their favorable charac- 
teristics and exactness no matter how many types of 
anomalous scatterers are present. 

A feature of the simultaneous equations that makes 
them potentially valuable is the existence of the 
individual intensities of scattering for the various 
types of atoms as unknown quantities to be evaluated 
by use of the equations. Once the intensities are 
known for the anomalous scatterers from solving the 
simultaneous equations, it is possible to solve for the 
structure of the anomalous scatterers. If this structure 
is too complicated to be amenable to an analysis by 
means of a Patterson function, it is still possible to 
undertake a determination of the structure by direct 
methods. Once the structure of just one type of the 
anomalous scatterers is known, the information pro- 
vided by the simultaneous equations permits the 
solution of the entire structure. 

This may well be the optimal strategy for using the 
simultaneous equations. However, it is also possible 
to use the simultaneous equations to obtain evalu- 
ations of triplet phase invariants in the absence of 
information concerning the structure of the 
anomalous scatterers. It is the purpose of this paper 
to show how these evaluations may be obtained. In 
addition, it will also be seen how information from 
isomorphous replacement may be introduced into the 
simultaneous equations. 

The accuracy of the evaluations of the triplet phase 
invariants for a substructure consisting of non- 
anomalously scattering atoms, for example, depends 
upon how closely the values of appropriate triplet 
phase invariants for a substructure composed of 
anomalously scattering atoms approximate to zero. 
For the simple structures that often apply to the 
anomalously scattering atoms, the approximation to 
zero is generally easily achieved. In order to obtain 
a more quantitative insight into this matter, some test 
calculations were carried out concerning the distribu- 
tion of values of the cosines of triplet phase invariants 
for simple structures and comparisons were made 
with results from theoretical formulas modified to 
facilitate the prediction of these distributions. 

Theory 

A simple result from the algebraic analysis (Karle, 
1980a) that illustrates the characteristics of the simul- 
taneous equations described above will now be pre- 
sented. It concerns a structure which is composed of 
atoms that scatter normally and one type of atom that 
scatters anomalously. A representative equation is 

IF,~sl 2= IF~'hl 2 +{1 +(f~,2.h/f~".h) 
X a n [(f;,2,h/f~,h) + 2 cos a~2,h]}lF2~hl ~ 

+211 +(f~z,h/f;.h) COS 6~2.h] 

x I F?.,,I I F~.,,I cos (,p ; ' . . -  ~ ~.,,) 

+ 2(f~,:.,,/f~.,,) sin &,~.,,IFT.,,I 
x IF~,,,I sin (~,~'.,- ~,~...). (l) 
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where IFAh[ 2 is the measured magnitude squared of 
the structure factor at wavelength A, ] " 2 F,,hl is the 
magnitude squared of the structure factor for the 
nonanomalously scattering atoms and IF~,h] 2 is the 
magnitude squared of the structure factor for the 
anomalously scattering atoms, but scattering as if they 
were doing so normally. The measured IF~hl 2 are 
corrected for vibrational effects and the latter are also 
absent from lF~',h[ 2 and , 2 ,, [F2,h[ • The quantities fx j ,  h and 
&,j.h are defined for a particular h, 

a = [(faj.h) --,aaj.h, J f aj, h , 2 + ( i f ' "  ~211/2 ( 2 )  

and 

fi,j,h = tan- '  (f'a~,h/fb, h)" (3) 

f '  and f "  are the real and imaginary corrections, 
respectively, to the normal atomic scattering factor, 
f". They represent the effects of anomalous dispersion 
and are tabulated in International Tables for  X-ray 
Crystallography (Cromer, 1974). The total atomic 
scattering factor is then 

f = f " + f ' + i f " .  (4) 

The phase angle ,p~'.h is the angle associated with the 
structure factor contributed by the nonanomalously 
scattering atoms and q~,h is the angle associated with 
the structure factor contributed by the anomalously 
scattering atoms, but scattering as if they were doing 
so normally. The subscript 1 refers to the non- 
anomalously scattering atoms and the subscript 2 to 
the anomalously scattering ones. 

Closely related equations can be formed from (1) 
by performing anomalous dispersion experiments at 
various wavelengths and noting that an equation for 
h is different from that for -h .  The equations are 
linear if the unknown quantities are chosen to be 
I n 2 n 2 n n n n 
F , , I ,  I I c o s  - F2,hl, IF,.hl F2,hl (¢Pl,h q02.h) and 

IF~'.hllF~,hlsin(~0~'.h--~0~,h). Having more than the 
algebraic minimum of equations would permit the 
use of least-squares methods to help compensate for 
experimental error. It is also possible to take advan- 
tage of the relation sinZq~ +cos2q~ = 1 and the non- 
negativity of the magnitudes of the structure factors. 
If the anomalous scattering arises predominantly 
from the isomorphous addition of a heavy atom to 
the native structure, then measurement of the diffrac- 
tion intensities for the native structure gives values 
for the I . 2 FI,hl, thereby reducing the number of 
unknowns in the simultaneous equations. In this way, 
information from isomorphous replacement may be 
combined with that from anomalous dispersion in 
the equations. 

An evaluation of the unknown quantities in (1) 
gives values for the angle differences, q~',h-- ~0~,h, and 
for the intensities that would be obtained for the 
structure of the nonanomalously scattering atoms, 

n 2 IF~,nl , and for the structure of tile anomalously scat- 
tering atoms scattering normally, I n 2 F2.hl • Information 

concerning the IF'~.hl 2 could be used to solve for the 
structure of the anomalously scattering atoms. With 
knowledge of this structure, values for the 'P~.n could 
be computed readily, thus leading to an evaluation 
of the remaining unknown quantities, the q~',h. With 
this information, the computation of the structure of 
the nonanomalously scattering atoms is readily per- 
formed. 

It is possible to generalize the result given in (1) 
to any number of types of atoms, all treated as 
anomalous scatterers (Karle, 1980a). If there are q 
types of atoms, the general result is 

q q 
= F" 2 + 2 ~  IF " , , , _  , IFxh] 2 E I i.h ,,hllFf, hl COS (~0,.h 'Pj.h) 

i= 1 i < j  

q 
+ E a n 2 F n  2 ( f  ai, h / f  i, h) l i,h 

i=1 

q 

+ 2 E (fZ,.h/f?.h)(fZj.h/fT, h)lfT, hl lET.hi 
i< j  

rl 
X COS ( ~  inh-  ~Oj, h -~ ~Ai, h -  ~Aj, h) 

q 
a " F" 2 +2 E ( f  a,.h/f ,.h)l ,.h COS 6a,,n 

i=l  

q 
F n  n a n +2 E I ,,hllF~,hl[(fA,,h/f,,h) 

i< j  

_ n ~ A i  h) XCOS(~7,h ~i.h-- , 

+(f,~j.h/fj."h) cos (~0,".h-- ~j".h-- t$aj.h)]. (5) 

The equations represented by (5) retain the features 
noted for the simple case represented by (1). They 
are exact and, if the unknown quantities are chosen 
in a fashion similar to the four described for (1), the 
equations are linear in the unknowns. Study of (5) 
shows that, after evaluation of the unknown quan- 
tities, the determination of only one of the substruc- 
tures corresponding to one type of anomalous scat- 
terer by use of the appropriate [F~,h] would permit the 
evaluation of all the phases required for the determi- 
nation of all the remaining substructures. 

This may well be the procedure of choice in the 
future. There is, however, an alternative to solving 
for some substructure since it is possible to obtain 
evaluations of triplet phase invariants by means of 
the algebraic equations and a simple probabilistic 
argument without any need to determine a substruc- 
ture. This matter will now be discussed. 

Triplet phase invariants 
The derivation of triplet phase invariants may be 
illustrated by considering the case of a structure com- 
posed of essentially nonanomalous scatterers and one 
type of anomalous scatterer represented by (1). It is 
apparent that solution of the equations to evaluate 
the unknown quantities would give values for the 
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phase differences, ~,,h - ~0~,h. From the values of many 
of the phase differences, it is possible to form the 
sums of suitably chosen ones, 

n n n n n /1 

~P I,h Jr ~P I,k Jr ~P I,(h+k) -- ~P2,h -- ~P2,k -- ~P2,(K+k) ---- Ahk,  (6) 
where A h k  is known from the values of the three 
individual phase differences comprising (6). It is seen 
that (6) consists of the difference of two triplet phase 
invariants, one for the structure consisting of non- 
anomalously scattering atoms, and the second for the 
anomalously scattering atoms (heavy-atom struc- 
ture). Values for the ]F~.hl indicate which of the triplet 
phase invariants for the heavy-atom structure are 
associated with large products, i F~.hF'~.kF~.(f,+~,)I. Such 
structures are usually rather simple, so that when the 
products of the magnitudes of the structure factors 
are large the triplet phase invariants for the heavy- 
atom structure can quite reliably be set equal to zero. 
This gives, under the conditions of large products of 
structure factor magnitudes for the heavy-atom 
structure, 

rl n n 
l,h + @ I,k + (/:) l,(fi+ft) = Ahk,  (7) 

an evaluation of triplet phase invariants for the unsub- 
stituted structure. 

The evaluation of a sufficient number of triplet 
phase invariants by use of (7) could obviate the 
necessity for determining the heavy-atom structure, 
since phase determination could, in principle, pro- 
ceed from knowledge of the values of the triplet phase 
invariants. 

Triplet phase invariant distributions 

Calculations were made of the distributions of triplet 
phase invariants in simple equal-atom structures, 
three- and nine-atom structures in space group P1 
and three- and nine-atom structures in the asymmetric 
unit of space group P2t2~2~. The atoms were dis- 
tributed at random with suitable separations between 
them. This is appropriate for the heavy-atom sub- 
structures that occur, for example, in heavy-atom 
substitution structures. 

For the various structures, thousands of cosines of 
triplet phase invariants, cos (~0h+~k+~OK+f,)= 
COS q~nk, were computed and their values were ordered 
according to the values of the products of associated 
normalized structure factors, 2N-~/Z[EhEkE~+~,I, 
where N is the number of atoms in the unit cell. 
Groups of five thousand cosine invariants in the 
ordered sequence were averaged to give (cos ~hk) and 
plotted against the average value of the corresponding 
2N-~/2IEhEkEf,+V, I. Plots of the results for two of the 
structures are shown in Figs. 1 and 2. 

Values for (cos ~hk) were also computed from four 
different theoretical formulas with the objective of 
determining which of the formulas can best represent 
the observed distributions. A general formula for the 

expected value of a cosine invariant is 

(cos ~hk) = l,(tlEhEkEr,+d)/lo(tlEhEkE~,+d). (8) 

The four different theoretical formulas are repre- 
sented in (8) by different definitions for the quantity 
t. The definitions corresponding to the data points 
shown in Figs. 1 and 2 are as follows: 

S: t = 2N- ' /2 ;  (9) 

J: t= 2 N  -'/2 +2N-3/2(IE,  I2 +lEd 2 +lE~+d2-3)  

+ 2N-5/2[IEnI" +lEkl 4 +lEf,+~l 4 

+ (  l l / 4 ) ( IEhEk l  2 +lEhE~+d 2 +lEkE~+d 2) 
-- (9 /2) ( lEd 2 + l E d  2 +IEK+d2)+2]; (10) 

t = 2 N - l / 2 / q t ,  (11) I . 

where 

q , =  1 +21u.u~uK+d-lu~l~-Iud~-IuK+d ~, (12) 
U = EN-I/2;  (13) 

D: t = 2N-'/2V3.p, (14) 
where 

( l - I u ,  I 2) + ( l - I u d  ~) + ( l - I  u~+~l ~) 
v3.p= 3(l_lU,12)(l_lUd2)(l_lU~+d2). (15) 
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Fig. I. Variation of the expected values of the cosines of triplet 
phase invariants with 2 N-~/21EHEkE~÷r,I for a three-atom struc- 
ture in space group PI .  The solid line is drawn among values 
computed experimentally from a large number of cosine 
invariants. Values from various theoretical formulas are plotted 
by means of symbols. The best fits to the larger values of 
2N-~/21EhEkEf,÷r,l are given by functions I and /9. There is a 
region, however, in which even these functions give estimates 
that are significantly too low. 
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In order to compute (10), (11) and (14) for given 
values of [EhEkEf,+f,I, as required for Figs. 1 and 2, 
it was assumed that IE.I = IEd - - IE~ '+d - -  
I EhEkEf,+d 1 / 3  

The expected value formula labelled S comes from 
the probability distribution for a cosine invariant 
derived by Cochran (1955) with the use of the central 
limit theorem. Formula J comes from the exponential 
form of the conditional joint probability distribution 
for a cosine invariant (Karle, 1972; Karle & Gilardi, 
1973), a form designed to diminish the effect of 
asymptotic convergence when normalized structure 
factors of large magnitude are present. The first term 
in J corresponds to S and the second and third terms 
are higher-order corrections. Formulas I and D have 
a heuristic origin and are intended to correct for the 
fact that formula S underestimates the distribution 
when the products of normalized structure factor 
magnitudes IEhEkEf~+~l are large. Formula I is 
derived from characteristics of a third-order deter- 
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Fig. 2. Variation of the expected values of the cosines of  triplet 
phase invariants with 2N-~/21EhEkE~,÷r,I for a nine-atom struc- 
ture in the asymmetric unit of a unit cell in space group P2~2~2~. 
The solid line is drawn among values computed experimentally 
from a large number of  triplet phase invariants. Values from 
various theoretical formulas are plotted by means of  symbols. 
The function J is not explicitly plotted since it coincides with 
the experimental curve. The function S gives estimates that are 
too low for the values of  the cosine invariants for the larger 
values of2N-~/2lEhEkEf,+r, I. The function D is a good fit to the 
experimental curve in the latter region while function I has a 
tendency toward modest overestimation as the values of 
2N-I/2IEhEkEf~+~, I decrease. 

minantal inequality (Karle, 1972) and formula D is 
derived from a joint probability distribution 
expressed in terms of the determinants that are associ- 
ated with the non-negativity of electron density distri- 
butions in a crystal (Karle, 1978: Kai'le, 1980b). 

The results of the computations for a three-atom 
structure in space group P1 are shown in Fig. 1. It 
is seen that the distribution for the structure composed 
of just three atoms is not well represented by S or 
even by J, the joint distribution carried out to higher- 
order terms in the exponential form. There are 
actually two plots for J given in Fig. 1, one that omits 
the term of order N -5/2 and one that includes it. Quite 
favorably for the assumption leading to (7) from (6), 
the distribution of the cosine invariants is much closer 
to unity than predicted by S or J. The theoretical 
formulas I and D give a better fit, but the actual 
distribution is still quite apparently closer to unity in 
the range 2N-I/2lEhEkEf~+~] = 1-3 and greater. 

At the other extreme of complexity in the test 
problems is the nine-atom structure in space group 
P2~2~2~. The results of the computations for this 
structure are shown in Fig. 2. It is seen that the 
function S again predicts values here that are too 
low. The functions J, I and D give a rather good fit 
to the experimental curve. The points for J are omitted 
in Fig. 2. They fit the experimental curve quite pre- 
cisely except below 2N-I/2IEhEkEK+~.]--0.4 where 
the calculation of J gives values that are slightly high. 

Experimental calculations of the averages of 
cosines of triplet phase invariants were made for a 
second three-atom structure in space group P1 and 
a second nine-atom structure in space group P21212~ 
to determine whether significant deviations from the 
distributions observed for the first structures would 
occur. None were observed. 

For the nine-atom structure in P I and the three- 
atom structure in the asymmetric unit of P2~2~2~, J 
fitted the large values well down to a value of about 
0-86 for the average of the cosines of the triplet phase 
invariants but S underestimated seriously the larger 
values of the cosines of the triplet phase invariants. 
J underestimated the cosine invariants between 
values of about 0.45 and 0.86. Below 0.45, it again 
continued to fit well. The possibility that the term of 
order N -7/2 would improve this was not tested. The 
calculations I and D fitted well from the largest values 
for the cosine invariants down to a value of about 
0.60 after which they overestimated the values. 

In some additional test calculations, it was found 
that, for a two-atom structure in space group P1, the 
average values of experimentally calculated triplet 
cosine invariants were unity until the value of 
2N-~/21EhEkEf,+t, ] fell below about 0.55, at which 
point the values decreased precipitously toward zero 
and slightly negative numbers. In the region below 
2N-~/2IEhEkEf,÷d =2,  all the theoretical functions, 
D , / ,  J and S underestimated badly the experimental 
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calculations. The functions I and D were better than 
J and S. For a one-atom structure in the asymmetric 
unit of space group P212~2~, the values of the 
exponentially calculated cosine invariants were fairly 
well represented by I and D down to 
2N-~/E[EhEkEf,+f,[--0.6, after which they over- 
estimated the values of the cosine invariants. The 
estimates from functions S and J were systematically 
too low. 

The calculations indicate that for the simple struc- 
tures that are expected to occur in heavy-atom deriva- 
tives of macromolecules, it should be easy to satisfy 
the criterion for (7), namely that triplet phase 
invariants for the heavy-atom structure have values 
close to zero for the larger values of 2N-t/2[EhEkEf,+f,[ 
appropriate to the heavy-atom structure. The calcula- 
tions also show that the functions I and D provide 
a satisfactory description of the distributions except 
for an underestimation of the distribution for two 
and three-atom structures in space group P1 in the 
range 2N-~/2IE, EkEt,+t,[ = 1-3. The three-atom test 
example implies that, for very simple structures, the 
distribution of triplet invariants is closer to zero than 
even theoretical formulas improved to take account 
of the effect of large values of the magnitudes of the 
normalized structure factors would predict, a rather 
favorable circumstance. I and D can often be used 
as theoretical estimators of the closeness to zero of 
triplet phase invariants for simple structures. Alterna- 
tively, a few calculations such as the ones performed 
here can be used as a guide to the validity of (7). The 
reliability of (7) will depend, in addition, on the 
accuracy with which the Ahk can be obtained from 
experimental data. 

Concluding remarks 

This paper shows that the values of triplet phase 
invariants can be obtained from an exact algebraic 
analysis of anomalous dispersion data. This can be 
achieved with very high accuracy in the mathematical 
sense since the only uncertainty would derive from 
deviations from zero of triplet phase invariants associ- 
ated with the structure of the anomalous scatterers. 
For macromolecules, the latter structures are usually 
quite simple and it is readily possible to satisfy the 
requirement for (7) to be valid, namely that the triplet 
phase invariants associated with the structure of the 
anomalous scatterers have values close to zero. The 
accuracy of the triplet phase invariants obtained from 
(7) is then mainly dependent upon the accuracy with 
which Ahk in (7) can be obtained from experimental 
data. It is easy to imagine circumstances in a multi- 
wavelength experiment in which the number of 
equations can exceed the number of unknowns by a 
factor of two or more. This has the potential to reduce 
the effect of experimental error and thereby improve 
the accuracy. 

331 

It was also noted that the a l g e b r a i c  e q u a t i o n s ,  from 
which the theoretical results of this paper follow, 
were of a form that permitted intensity information 
from isomorphous replacement experiments to be 
easily introduced into the equations, thus reducing 
the number of known quantities to be determined. 

Use of the algebraic equations to provide the values 
of triplet phase invariants may not be the optimal 
way to derive phase information from them. In order 
to obtain phase information from the equations other- 
wise, however, it would be necessary to solve for the 
structure of at least one type of anomalous scatterer 
from knowledge of the corresponding intensities that 
occur as unknown quantities in the equations. If for 
some reason this structure determination falters, it 
may be possible to proceed with the use of the values 
of the triplet phase invariants. 

There are some additional virtues of the anomalous 
dispersion technique that are worth noting. Essen- 
tially, the power of the method does not deteriorate 
with complexity. The power depends upon the contri- 
bution of the anomalous scatterers to the measured 
intensities relative to that of the nonanomalous 
scatterers. So long as a favorable ratio is maintained, 
complex systems remain accessible. A second point 
of interest concerns the fact that the number of atoms 
in a structure that are strong anomalous scatterers in 
the usual systems of interest is a rather small fraction 
of the total. It is therefore appropriate to expect that 
a rather large amount of data would be obtained from 
an anomalous dispersion experiment relative to the 
number of atoms that scatter anomalously. This facili- 
tates the determination of the structure of the 
anomalous scatterers by use of the corresponding 
intensities that are obtained from the solution of the 
algebraic equations. It also facilitates the evaluation 
of a large number of triplet phase invariants from (7) 
because with many data the criterion for the validity 
of this equation, namely values close to zero for the 
triplet phase invariants associated with the structure 
of the anomalous scatterers, is readily satisfied in a 
large number of instances. 
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